
CS87 Project Report: Parallelized Computation of Superpixels

Rachel Diamond, Tai Warner, and Henry Han
Computer Science Department, Swarthmore College, Swarthmore, PA 19081

May 11, 2018

Abstract

Superpixelation involves grouping pixels in a
way that captures some of the perceptual and
intuitive meaning of an image. Superpixels are
a useful tool for many computer vision problems
including image segmentation and object recog-
nition because superpixelation can be used as
a preprocessing step that both reduces dimen-
sionality and identifies more meaningful features.
A good superpixel algorithm efficiently produces
superpixels that respect object boundaries, are
of approximately equal size, and are compact –
this means that superpixel edges fall along the
edges of objects in the image, there is a roughly
constant number of pixels per superpixel, and
that each superpixel is relatively round. We im-
plement a parallelized version of the simple linear
iterative clustering (SLIC) algorithm for super-
pixelation with the goal of improving time effi-
ciency and possibly scaling to larger image sizes.
SLIC uses a k-means clustering approach which
iteratively updates the assignment of pixels to
superpixels based on the distance between the
pixel and the superpixel centers. It is a good
candidate algorithm for GPU parallelization be-
cause it has subparts that can computed inde-
pendently by pixel or by superpixel. Although
our results show that our parallelized implemen-
tation is 4-5 times slower than the sequential
SLIC, we achieve nearly the same accuracy using
metrics calculated using UC Berkeley’s Segmen-
tation Benchmarks - especially as the number of
superpixels increase.

1 Introduction

Superpixels are an approach to image segmen-
tation in which the pixels are grouped together
in a way that graphically approximates the in-
formation contained in the image. For example,
regions of the same color should be grouped to-
gether, and edges between two objects in a pic-
ture should correspond to a boundary between
two superpixels.

Figure 1. An example of SLIC segmenting
an image into superpixels and superimposing
the boundaries (shown in yellow) over the image.

1



Superpixels can be useful in computer vision
as a step toward object recognition; seeing ob-
jects as collections of constituents is an intuitive
goal for machines. A superpixel could also pro-
vide a viewer with a better idea of what an image
is about since it contains information about the
shape of the region and the variation in color
within the region, as opposed to a single colored
pixel, which would give a viewer no idea what
the image contains. Superpixelation can even be
used to create compressed representations of im-
ages if the color variation within a superpixel is
discarded in favor of just the superpixel’s shape
and average color.

One example application where superpixela-
tion served as an important preprocessing step is
in Lucchi et. al’s (2010) work [3] to identify mito-
chondria in an electron microscope (EM) image
of neural tissue. This is a particularly difficult
object localization and recognition problem be-
cause, as can be seen in Figure 2(a), the edges of
mitochondria look very similar to other features
in the EM image, mitochondria are irregularly
shaped, there are many structures in a single im-
age, and textures clutter the background. Lucchi
et. al’s were able to improve on previous results
by introducing a new algorithm that starts by
segmenting the image into superpixels. Then a
vector of shape and color features were calcu-
lated for each superpixel. These features and
the training data shown in Figure 2(c) are then
used to train an Support Vector Machine (SVM),
which is predictive model that classifies whether
each superpixel is mitochondial boundary. The
final steps map back from superpixels to pixels
and apply smoothing to get a final segmentation.

Figure 2. 1 Basic steps of an object localization
algorithm that uses SLIC to identify mitochon-
dria in an image of neural tissue. (a) Original
image. (b) Superpixel segmentation. (c) Graph
defined over superpixels. White edges indicate
pairs of superpixels used to train an SVM that
predicts mitochondrial boundaries. (d) SVM
prediction where blue indicates a probable
mitochondrion. (e) Graph cut segmentation. (f)
Final results after automated post-processing.

We use Achanta et al’s (2010) simple linear
iterative clustering algorithm, SLIC, as a base-
line to implement our own version parallelized on
the GPU. SLIC is based on the classic machine
learning algorithm k-means clustering. Section
3.1 has a detailed explanation of k-means, but
at a high level, we begin with k pixels at even
intervals designated as the centroids. We then
run (usually) ten iterations where pixels are as-
signed to centroids and then centroids are ad-
justed to have the average color and location of
their assigned pixels. This causes centroids to
settle into k local optima, generally representing
the centers of k representative constituents of the
image. The simplicity of the algorithm allows it
to perform with surprising speed given its accu-
racy. However, substantially sized images — for
example, landscapes shot in high resolution —
can take up to a minute due to the repetitive
nature of the algorithm multiplied over millions
of data points.

1Figure from Lucchi et. al (2010) [3].

2



Our extension to SLIC is parallelism on the
GPU. For this, our system consists of eight In-
tel i7 cores and a NVIDIA Quadro P5000. We
parallelize over the pixels in the image; while the
GPU can assign each thread its own pixel up to
about ten trillion pixels, we hope to quickly reach
a speedup of a few thousand, when all the cores
of the GPU are exploited, which should happen
even with an image as small as 50x50 pixels.

At the end of this paper, we discuss our exper-
imental design and results. We present the re-
sults of tests that access quality of performance
of parallel and sequential implementations and
the runtime efficiency of each. We use a metric
of boundary recall to assess quality, where the in-
tuition is that high boundary recall means that
our superpixelation captures most of the contrast
between objects in the image. We also measure
total time taken for the program to run and com-
pare these results between sequential and paral-
lel runs of SLIC.

2 Related Work

Achanta et. al (2010, 2012) [1][2] introduced
the SLIC algorithm, a new technique for solv-
ing the problem of image superpixelation. While
older algorithms existed that use graph-based or
gradient ascent methods, SLIC is built on a k-
means clustering approach. This is conceptually
much simpler, because it intuitively clusters in
terms of the color and position of pixels – two
pixels that are a similar color but far away are
not likely to be part of the same object, just as
two nearby pixels of starkly different color are
probably part of different objects. It is also a
simpler algorithm computationally, and takes or-
ders of magnitude less time than some other su-
perpixel algorithms.

Some SLIC extensions have already been ex-
plored and implemented. For example, gSLIC
is a parallel implementation of SLIC that uses
CUDA to run on the GPU [4]. gSLIC achieved
an impressive 19 times speedup when compared
to SLIC for the largest image size that they

tested (1280 x 960 pixels). ASLIC, or Adap-
tive SLIC, is an implementation of SLIC that
doesn’t require the programmer to tune any hy-
perparameters [2].

Our parallelized version of SLIC differs from
gSLIC in that we primarily used Python and Py-
Cuda (A Python wrapper to use Nvidia’s CUDA
parallel computation API in C/C++) to paral-
lelize th e kernels, whereas gSLIC is written en-
tirely in C++.

Prior to SLIC, there were other approaches
to image superpixelation that used graph-based
(GS04, NC05) or gradient-ascent-based (WS91,
MS02) algorithms. In graph based algorithms,
each pixel becomes a node in a graph, and
the edge weights are set to be proportional
to the similarity between pixels. In gradient
ascent based algorithms, the algorithm uses
gradient ascent methods to refine clusters (after
an initial rough clustering) and obtain better
segmentation [1]. As shown in Figure 3, in
terms of metrics for image superpixelation, i.e.
speed, boundary recall, etc., SLIC outperforms
all of the other algorithms [1].

Figure 3.2This figure shows that neither NC05,
a graph-based algorithm, nor QS09, a gradient-
ascent-based algorithm, can outperform SLIC
in all four of the following metrics regarding
the superpixels created by the algorithms:
object boundaries, equal size, compactness, and
runtime.

2Segmented images by Achanta et. al (2012) [2].

3



3 Our Solution

The SLIC algorithm implements local k-means
clustering to group pixels together based on their
color similarity and proximity. Instead of com-
paring pixels in the canonical RGB color space,
our implementation of SLIC assumes an image
in CIELAB color space which represents color
in terms of dimensions referred to as l, a, and b
respectively. The CIELAB color space is gener-
ally regarded as perceptually uniform for small
color distances and is intended to more closely
match how humans perceive color [1]. Our im-
plementation combines color information and lo-
cation on the image for each pixel, effectively
mapping each pixel in a 2-dimensional image
into 5-dimensional labxy space. Our implemen-
tation extends to higher dimensional space to
support segmentation of 3-dimensional images
in 6-dimensional labxyz which allows superpix-
elation of video. Because we didn’t get to ex-
perimenting in 6-dimensional labxyz space with
videos, z is 1 in all our experiments.

3.1 k-Means

The k-means clustering algorithm is a machine
learning algorithm that aims to iteratively clas-
sify n observations into k clusters by assigning
each observation to the cluster that is nearest to
it by some given distance measure. As shown in
Figure 4, cluster centers can be initialized ran-
domly or based on a preset arrangement. The
algorithm will then run iteratively for a fixed
number of repetitions or until the number of ob-
servations reassigned to a new cluster from one
step to the next falls below a set threshold. Each
iteration has two steps: expectation and maxi-
mization.

During the expectation step, the distance of
each observation to each cluster center is cal-
culated and the observation is assigned to the
cluster that is the closest to it based on a given
distance measure (usually Eucleadian distance).
Next, during the maximization step, the cluster
centers are re-calculated based on the average of

the new member observations.

Figure 4. 3 In Iteration 1, cluster centers are
initialized and represented as colorful crosses.
The observations are associated with the closest
clusters in iteration 2. By iteration 6, the
cluster centers have clearly shifted around as
they are recalculated in the maximization step.
In the last plot, we can see that the algorithm
has converged and every observation is now
associated with its closest cluster.

In our implementation of SLIC, each pixel in
the image is an observation that the algorithm
clusters into one of k superpixels. We initial-
ize cluster centers, which we call centroids, as
the centers of an evenly spaced rectangular grid
over the image. Then we run ten iterations of
the expectation-maximization steps. Achanta et.
al found that ten iterations is usually sufficient
to minimize the residual error after reassigning
centroids [1], so we default to ten iterations as
well. Also in accordance with Achanta et. al’s
method, we implement a local (as opposed to
global) k-means algorithm. This means that dur-
ing the expectation step, instead of calculating
the distance from each pixel to each centroid,
we only calculate the distance from each pixel to
each centroid within a 2S × 2S window, where
S =

√
n
k , n is the number of pixels, and k is the

3Taken from http://www.learnbymarketing.com/

methods/k-means-clustering/

4

http://www.learnbymarketing.com/methods/k-means-clustering/
http://www.learnbymarketing.com/methods/k-means-clustering/


number of centroids, or superpixels. We can re-
strict the search area for each pixel because we
expect similar pixels that should be in the same
superpixel to be nearby one another.

Implementing a local k-means instead of
searching globally and limiting the algorithm to
ten iterations improves the runtime from O(kni)
to O(n), where k is the number of centroids, n is
the number of pixels, and i is the number of it-
erations for the k-means algorithm. This modifi-
cation drastically reduces the number of calcula-
tions in the expectation step - instead of calculat-
ing the distance from each pixel to all centroids,
which is O(kn), local k-means only requires a
constant number of calculations from each pixel
to each centroid within a 2S × 2S window. This
makes the expectation step just O(n).

3.2 Distance Measure

Because we are working in 6-dimensional
labxyz space, we use a special distance measure
Ds, defined as follows:

dlab =
√

(lk − li)2 + (ak − ai)2 + (bk − bi)2 (1)

dxyz =
√

(xk − xi)2 + (yk − yi)2 + (zk − zi)2

(2)

Ds = dlab +
m

S
dxyz (3)

Here, Ds is the sum of the lab distance and the
xyz plane distance normalized by the grid inter-
val S, and m is the compactness factor. This
hyperparameter m allows us to control the com-
pactness of a superpixel by emphasizing spacial
proximity during the normalization of the spa-
tial distances. [1]. Figure 5 shows the effect of
varying m on an image.

Figure 5. This figure shows the impact of the
compactness factor m. As m increases, spatial
proximity is emphasized and the superpixels be-
come more compact. This results in smoother
and rounder superpixels.

3.3 CUDA Parallelism

For a more modular, powerful, and concep-
tually easier coding environment, we break up

5



the pipeline of SLIC. We designate three main
parts which are parallelized in separate CUDA
kernels: the initial assignment of pixels through-
out the image to centroids, the assignment of
pixels to the closest centroid, and the recalcula-
tion of the centroid locations. We also draw from
specific knowledge about CUDA architecture in
some of the choices we make about the design of
the parallelism. In order to quickly reach max-
imum parallelism, we parallelize over pixels and
assign one thread per pixel. With this design
choice, it makes the most sense to store the data
for the algorithm in three large arrays represent-
ing the color values of each of n pixels, the k
average coordinate values of each centroid, and
the mapping of each of n pixels to its assigned
centroid. This allows us a parallelism factor up
to n for the first assignments (since it just con-
sists of populating the assignments array), and
update assignments (since it involves each pixel
assessing candidate centroids for the new clos-
est). The recomputing of the centroids reaches
a parallelism factor of k, since there are k cen-
troids.

The first assignments function simply uses as
many threads as there are pixels in the image,
and uses the thread ID to map each thread to
a unique pixel. Then, it calculates the xyz co-
ordinates of the pixel and uses this to calculate
the identity of the nearest centroid. (This desig-
nation is easy to figure out beforehand, but the
function to update assignments which will be de-
scribed later involves searching for the nearest
centroid.) This function does not need to re-
turn anything to the CPU before calling the next
function.

Once the first assignments are made, we en-
ter a loop which is the expectation-maximization
part of this algorithm. Importantly, this loop
cannot be parallelized because each round re-
lies on the state resulting from the last round.
This loop consists of recomputing centroids (the
expectation step), and adjusting pixels’ assign-
ments to them (the maximization step). Recom-
puting centroids is parallelized over k threads

on the GPU, and each thread takes the average
value in 6-dimensional labxyz space of its (on
average) k

n member pixels. These measurements
are embarrassingly parallel, but there is not an
easy way to further parallelize them on the GPU,
so each thread loops through every member. By
the end of this function, the array of centroids
has been updated.

Finally, we update the assignments. Again,
this is parallelized over all n pixels in the im-
age. However, now each thread must do a cer-
tain number of checks to make sure that a new
centroid has not become closer than the old one.
For this, we make the assumption that the final
centroid that a pixel ends up associated with will
be one of its closest initially. The “close” region
is defined by three centroids in each dimension.
For 2-dimensional images, this means we look at
a local region that includes nine centroids, and
calculate the distance to each. Most of the time,
when this function finishes, we go back to recom-
puting the centroids, but after the final iteration,
we copy the memory that has been manipulated
by the GPU back to the CPU in order to post-
process and visualize it.

4 Results

Our experiments are run on the computer
anise at Swarthmore College which has eight In-
tel i7 cores and a NVIDIA Quadro P5000 graph-
ics card.

4.1 Timing Metric

A central goal of implementing a parallelized
version of SLIC is to decrease the time that
it takes to produce a superpixel segmentation.
This is especially desirable if SLIC is being used
as a preprocessing step for a computer vision task
like object recognition, because the overall algo-
rithm can only be as efficient as its component
parts.

To test the efficiency of our parallelized imple-
mentation of SLIC we used timing code to deter-

6



mine runtime on a single square image scaled to
five different edge sizes: 128, 256, 512, 1024, and
2048px. We used the same image scaled so that
the complexity of the image itself would have
minimal effect on the timing. We ran the sequen-
tial SLIC implementation on the same set of five
images. We also varied the number of superpix-
els k in order to see how this affected runtime.
We expect increasing image size to lead to longer
runtime because many more computations must
be performed. We also expect that increasing
the number of superpixels will have little effect
on sequential runtime, but it will improve per-
formance of the parallel algorithm because the
recompute centroids function is parallelized in
terms of the number of superpixels.

We ran five repetitions of each set of hyperpa-
rameters and averaged the results to account for
potential variation in background programs that
could affect the timing results.

4.2 Timing Results

Figure 6. Timing results for the parallel (solid
lines) and sequential (dotted lines) implemen-
tations of SLIC as image size and number of
superpixels is varied.

As shown in Figure 6, both the parallel and
sequential versions of SLIC had runtimes that
scaled linearly in the number of pixels, regard-
less of the number of superpixels. The sequential

version of SLIC was 3.7 times faster for k = 1000
and 4.9 times faster for k = 100 when averaged
across image sizes. This was unexpected given
that the purpose of parallelism is to reduce run-
time. We did a more detailed breakdown of how
time is spent within the algorithm to determine
if the relatively long execution time for the paral-
lel implementation was due to copying memory
between the CPU and the GPU. However, we
determined that the majority of the time was in
fact spent within the kernel calls for recomput-
ing superpixel centroid locations and updating
the assignment of pixels to superpixels.

As expected, the number of superpixels did
not significantly affect the runtime of the sequen-
tial algorithm. With 1000 rather than 100 super-
pixels, the parallel algorithm was 11.1% faster
when averaged across image sizes.

4.3 The Boundary Recall Metric

Boundary recall is a metric that tells us the
percentage of the actual object boundaries in the
image that our algorithm correctly labels as a
segmentation boundary. Using the metrics true
negative (TN), false negative (FN), false positive
(FP), and true positive (TP), boundary recall is
defined as

boundary recall =
TP

FN + TP
(4)

This means that if our algorithm has a bound-
ary recall of 0.60 for a given image, then 60%
of the boundaries in the image are also located
where there is a superpixel boundary identified
by our algorithm.

To test our algorithm’s boundary recall, we
used David Stutz’s benchmark code written
as an extension to the Berkeley Segmentation
Benchmark that is meant to provide performance
metrics for contour detection and image segmen-
tation [5].

Figure 7 shows both the inputs to the bench-
mark code and the output from our SLIC algo-
rithm. To calculate boundary recall, we provided

7

https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/resources.html
https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/resources.html


the benchmark code with three images: the orig-
inal image, the “correct” or ground truth seg-
mentation of the image, and a contour map of
the superpixel segmentation that our algorithm
generated. The superpixel segmentation and the
image with superpixel boundaries superimposed
onto it are both outputs of our SLIC algorithm.

Figure 7. Clockwise from upper left: the original
picture, the original picture with superpixel
boundaries from our algorithm superimposed
onto it (yellow lines), superpixel boundaries our
algorithm determined, and the “correct” seg-
mentation from by the Berkeley Segmentation
Benchmark [5] dataset.

4.4 Boundary Recall Results

We ran experiments with David Stutz’s exten-
sion on Berkeley Segmentation Benchmark by
varying the number of superpixels k, the com-
pactness factor m, for the sequential and parallel
implementations of SLIC.

The boundary recall results presented in Fig-
ure 8 largely make sense. Boundary recall was
expected to increase as the number of superpixels
increase simply because an increase in the num-
ber of superpixels will increase the total number
of boundaries. This increases the likelihood that
the “correct” ground truth boundaries will also
be segmentation boundaries. This was shown to
be true for both the parallel and sequential im-
plementations.

Figure 8. As shown in the chart, boundary
recall to increases significantly as the number of
superpixels increases. The sequential version of
SLIC has slightly higher recall than our parallel
implementation. A low compactness factor
appeared to do better for lower values of k, and
a high compactness factor appeared to do better
for higher values of k.

When m is small, SLIC appears to do bet-
ter when k is small as well for both the par-
allel and sequential implementations. This is
also expected because with less superpixels and
less enforced spatial compactness, the algorithms
are more likely to capture the segmentation
boundaries in the ground truth with jagged and
rougher edges in each superpixel. As m gets big-
ger, the algorithms do better when k is bigger.
This is because as the images become heavily
segmented it is naturally able to capture the seg-
mentation boundaries in the ground truth. With
a larger value of m, spatial proximity is em-
phasized and the superpixel boundaries will be
smoother and more naturally capture boundaries
in the image.

In theory, we expect the sequential and par-
allel algorithms to produce the same superpixels
and thus produce the same boundary recall mea-
sures. However, because our parallelization of
the code differs slightly from the sequential ver-
sion in order to effectively parallelize the code,
the superpixels differ and thus the boundary re-
call measures do as well. This is most notable
when both m and k are small.

All in all, our parallel version of SLIC performs
nearly as well as the sequential version of SLIC,

8



especially as the number of superpixels and the
value of the compactness factor increases.

5 Conclusions and Future
Work

5.1 Conclusions

We expected to achieve a significant reduction
in runtime by parallelizing the SLIC algorithm
for superpixels. However, our parallelized ver-
sion of SLIC was about 4-5 times slower than the
sequential version. It is not clear why our par-
allel implementation was drastically slower, but
we suspect that our parallel kernels had synchro-
nization and concurrency problems as we tried
to hack them together. We think this prob-
lem was compounded by the fact that we im-
plemented the algorithm in Python and paral-
lelized with PyCuda. We chose to implement
SLIC in Python because we thought it would be
easier, but the high level coding style actually be-
came an obstacle when we were parallelizing the
code. Now that we really understand the con-
cepts behind the algorithm, it would be smoother
to implement SLIC in C or C++. We also origi-
nally suspected that the slower runtime was due
to copying memory back and forth between the
CPU and the GPU. However, we determined
that the majority of the time was actually spent
within the kernel calls for recomputing the su-
perpixel centroid locations and updating the as-
signment of pixels to superpixels. On the other
hand, even though our algorithm didn’t perform
better in terms of speed, it achieved nearly the
same boundary recall accuracy, especially as the
number of superpixels and the value of the com-
pactness factor increased.

5.2 Future Work

SLIC has been implemented with a number
of extensions since its conception. GPU paral-
lelism is one, dubbed gSLIC, as well as ASLIC,
a zero-parameter version of SLIC which adap-
tively assesses the visual activity in a region and

lowers compactness in highly textured areas in
order to more accurately represent the irregu-
lar constituents. This provides a simple next
step building off of our work presented here — a
GPU parallelism of SLICO would likely require
little more than a change to the objective func-
tion within the kernel to update assignments.

There are also a few potentially interesting
niches of research to be filled with SLIC-based
applications. While our work presented in this
paper focuses on 2-dimensional images which re-
sults in 5-dimensional k-means, a 6-dimensional
version could allow for object recognition and
tracking through time. An example would be
an application of SLIC over a movie. For this,
all frames in the movie would be consolidated
into a 3-dimensional block of images, like stack-
ing thousands of sheets of paper together into a
block. Now there is a sixth axis, t, for time. In
this representation, a ball being thrown across
the screen would be represented by a diagonal
worm shape — in the early frames, the ball is
on one side but as its position in t increases, its
xy position changes, too. Ideally for this version
of the problem, the algorithm would try to find
the 3-dimensional supervoxels that make up the
ball’s path. The distance function would have to
be changed, and we suspect that there should be
less compactness along t as along x and y, since
t isn’t spatial in the same way as the latter two.

SLIC could be used for general purpose data
compression. Like the boom of GPGPU com-
puting, which conceived of regular problems as
matrices in order to take advantage of the GPU’s
propensity for projecting planes, regular data
could be conceived of as an image, and com-
pressed using SLIC. SLIC is a convenient al-
gorithm for compression because the user can
choose k; the closer k is to n, the less com-
pressed the output is. By this token, a dataset
could be compressed, while still hopefully pre-
serving the general distribution and outline of
the original data. We suspect that a SLIC-based
compression would be less accurate than some
other well-known machine learning techniques

9



for dimensionality reduction given the scale of
the compression, although Lucchi et al (2010)
have shown that more meaningful new dimen-
sions can be extrapolated from the output given
by SLIC.[3]

6 Meta-discussion

We originally intended to parallelize SLIC in
the first week, implement SLICO (adaptive SLIC
that self-tunes m) by week 2, experiment with 6-
dimensional supervoxels, and extend gSLIC and
SLICO to create gSLICO - a parallelized version
of SLIC that adaptively tunes m. We think we
fell short of our goals for a number of reasons,
but bad documentation and starting code was
likely the biggest.

Initially, we intended to write our implemen-
tation in CUDA C++. This quickly became con-
fusing and hard to read, and we decided it would
be simpler and more modular in Python. We
used PyCUDA, an appropriation of CUDA to a
Python environment, to help connect with the
GPU. However, while the documentation is not
bad, it leaves something to be desired in terms
of thorough explanation, return values, and espe-
cially error messages. We experienced a hangup
for over a week due to an error that was impossi-
ble to find a helpful discussion of on the internet.
In addition, there is no GDB for a Python envi-
ronment, so this type of low-level error tracing
was especially difficult. While this turbulence
between low- and high-level created some ten-
sion in our work flow, there were a number of
benefits that the high-level aspect of this project
provided: namely, image interpretability. In pre-
senting our project, we time and again were able
to show listeners our generated images while we
were talking to them about the particular al-
gorithm, and this multimedia approach allowed
people who were less interested in the math to
grasp the function of the algorithm intuitively,
while also being able to connect the math to
varying behavior between different runs of the
program.

References

[1] Radhakrishna Achanta, Appu Shaji, Kevin
Smith, Aurelien Lucchi, Pascal Fua, and
Sabine Süsstrunk. SLIC superpixels. Techni-
cal report, 2010.

[2] Radhakrishna Achanta, Appu Shaji, Kevin
Smith, Aurelien Lucchi, Pascal Fua, and
Sabine Süsstrunk. SLIC superpixels com-
pared to state-of-the-art superpixel meth-
ods. IEEE transactions on pattern analysis
and machine intelligence, 34(11):2274–2282,
2012.

[3] Aurelien Lucchi, Kevin Smith, Radhakrishna
Achanta, Vincent Lepetit, and Pascal Fua. A
fully automated approach to segmentation of
irregularly shaped cellular structures in em
images. International Conference on Medi-
cal Image Computing and Computer-Assisted
Intervention, pages 463–471, 2010.

[4] Carl Yuheng Ren and Ian Reid. gSLIC: a
real-time implementation of SLIC superpixel
segmentation. University of Oxford, Depart-
ment of Engineering Science, 6, 2011.

[5] David Stutz. Extended berke-
ley segmentation benchmark.
https://github.com/davidstutz/

extended-berkeley-segmentation-benchmark,
2014.

10

https://github.com/davidstutz/extended-berkeley-segmentation-benchmark
https://github.com/davidstutz/extended-berkeley-segmentation-benchmark

	Introduction
	Related Work
	Our Solution
	k-Means
	Distance Measure
	CUDA Parallelism

	Results
	Timing Metric
	Timing Results
	The Boundary Recall Metric
	Boundary Recall Results

	Conclusions and Future Work
	Conclusions
	Future Work

	Meta-discussion

